Energy A new core product for the palm oil sector ?!

PIPOC Conference Sep. 28. 2005

Soeren Varming, Mohd Iskandar, Dr. Yeoh B.G., Soon Hun Yang, Anders Ewald, Dr. Helle Junker, Dora Ruth Trommer

Out line of the presentation

- Palm oil sector seen from an energy perspective
- Palm oil sector as supplier of transport fuel
- Options for increased value from non-oil products
- What's in it economically ?
- And how to get on?

Renewable Energy and Energy Efficiency

- Start in March 2003
- Placed in Economic Planning Unit working with background analysis for Ninth Malaysia Plan
- Input: 47 man month international consultants + 66 man month local
- Financed by Danida

Palm oil products seen as energy

Total "energy" from Palm Oil Sector : 953 PJTotal energy supply in Malaysia:2359 PJ

Value per GJ – conventional use

Looking for a new price determinant

Bio-diesel: Conventional wisdom or new world ?

CDM creates a monetary value of environmental improvement

- CDM is a new commodity
- CDM transforms reductions in emissions of CO2 and methane into a cash-flow
- The CDM approval mechanism creates Certified Emission Reduction (CER) after national and international approval
- CERs can be sold on the spot-market or on forward contracts - in some cases an upfront payment can be negotiated
- Buyers are very active today with a total commitment of more than 1 billion USD from governments and private companies

Options for optimisation

Туре	Status (Present use)	Vision (Possible future uses)	Possible contribution from CDM
Palm Kernel Shell (PKS)	Local energy production with low efficiency	Export as a valuable fuel i.e. replacing coal in industry and power stations Or Use for high efficient CHP at the mill	Increase the value of bio-fuel replacing coal
Fibre	Local energy production with low efficiency	Export as a valuable fuel i.e. replacing coal in industry and power stations Or Use for high efficient CHP at the mill	Increase the value of bio-fuel replacing coal

Options for optimisation (2)

Туре	Status (Present use)	Vision (Possible future uses)	Possible contribution from CDM
Empty Fruit Bunches (EFB)	Mulching as fertiliser and/or waste product	Local energy production with high efficiency and possibility of sale of electricity Or Pre-treatment to higher quality fuel for sale Or Non-energy-uses as raw material in i.e. fibre production	Increase the value of electricity sold to the grid or for off-grid consumption
Palm Oil Mill Effluent (POME)	Treated in open ponds to reduce organic content before discharge to river	Local biogas production and use for on-site electricity production Or Local biogas production for sale as fuel	High value from avoided methane emissions from anaerobic ponds and possible increase in the value of electricity sold to the grid or for off-grid consumption

Case study 1 – Impact of CDM for POME

- Mill with capacity of 40 ton of Fresh Fruit Bunches per hour
- Power generated will be connected to the grid
- Contribution CDM is 6-10 sen/ KWh
- Impact of CDM is different per technology used

Technology Option	Capital cost (RM)	0 & M cost (RM)	IRR without CDM (%)	IRR with CDM (%)
Power and Heat Generation	13,341,000	355,230/yr	5.8	11.0
(Gas Turbine)				
Power and Heat Generation	11,435,000	303,130/yr	9.6	15.0
(Gas Engine)				
Power Generation (Gas Engine)	10,067,000	262,090/yr	7.6	13.7

Case study 2 – Impact CDM on CHP project

- CHP technology used at a palm oil mill
- Power generated will be connected to the grid and partly used for on site consumption
- Project displaces power from grid connected fuel plants and biomass used for heat generation (e.g. no CERs related to heat)
- Contribution CDM is 1.1 sen/ KWh

www.econdenmark.dk

Technology Option	Capital cost (RM)	O & M cost (RM)	IRR without CDM (%)	IRR with CDM (%)
<i>Power and Heat Generation 6 MW</i>	19,500,000	1,800,000	0.2%	1.5%
Power and Heat Generation 14 MW (10 MW for the grid)	40,000,000	3,100,000	16.3%	18.3%

Increased value of energy products

Increased value for 60 t/hour mill

Total extra value

 From energy: 4.9 mill RM/year
 From CERs: 1.4 mill RM/year
 Total: 6.3 mill RM/year

 Extra value pr ton CPO

 111 RM/ton CPO

ECON Carbon – a company in the ECON Group

Services

screen project pipelines for potential climate change projects assist project owners with CDM and JI project development facilitate transactions of carbon credits **can offer services on a no-cure-no-pay basis**

Focus areas:

- Russia: wastewater, gas leaks, flaring, power and heat
- Flaring in developing countries: Algeria, Iran, Nigeria, other west Africa
- South East Asia: Malaysia, Indonesia, Thailand
- Southern Africa: South Africa, Mozambique, Zambia

Torleif Haugland, Partner (Norway) Director, ECON Carbon Jørgen Abildgaard, Partner (Denmark) Director Climate Change group Paul J. Parks, Partner (Italy) Petroleum & CDM, energy policy. Arve Johnsen, Partner (Norway) Chairman ECON Carbon Søren Varming, Partner (Malaysia) CDM, Renewable energy, power & climate policy. Randall Spalding-Fecher (South Africa) CDM, energy & development.

Thank you

Contact: Soeren Varming sva@econdenmark.dk +(6)019 256 7970

analysis www.econdenmark.dk